|
公司基本資料信息
注意:發布人未在本站注冊,建議優先選擇VIP會員 |
依據van Deemeter 方程,隨著顆粒度的不斷降低,渦流擴散減小,分子傳質阻力減小,相應的理論塔板高度( HETP) 也下降,得到的柱效也更高,由于壓力與填料粒徑平方成反比,因此隨著粒徑減小壓力會急劇增加。從液相色譜出現至今,硅膠粒徑從100 μm左右降低到3-10 μm,再減小到亞2μm,其柱效由每米數十塔板數提高到3.2x105塔板數每米。液相色譜也從工業用常壓制備色譜發展到分析檢測用高壓HPLC再到目前超高壓UPLC。工業分離純化的粒徑在10微米以上,而常規HPLC填料粒徑在3-5微米,UPLC填料顆粒小于2μm。因此伴隨著越來越精細的硅膠色譜填料的使用,HPLC分離分析性能也越來越好。亞2μm的硅膠填料的使用使得HPLC的分辨率,檢測速度及柱效達到前l所未有的水平,同時也引起了色譜分析儀器的變革。
硅膠表面修飾和功化制備技術發展歷程:
硅膠基球是硅膠色譜填料發展的基礎,硅膠性能的改善是源于對硅膠顆粒形貌結構、粒徑大小、粒徑分布、孔道結構、比表面積等的控制能力提高。硅膠表面改性和功能化是色譜分離模式賴以建立的基礎,其功能基團性質、種類、及密度會影響其分離的選擇性。隨著HPLC 應用領域越來越廣,硅膠表面功能化種類也越來越多,且硅膠基球表面富含具有反應活性的硅羥基,因此可以通過化試劑與表面硅羥基反應引入不同的功能基團,以制備不同分離模式的色譜填料。
SEC硅膠填料性能主要取決于孔容積、孔徑大小和分布,粒徑大小和粒徑分布。表面鍵合相主要是帶電中性親水材料可以減少或消除樣品分子與填料表面之間的次級相互作用力,確保SEC分離按體積排阻模式進行。由于SEC分離是體積排阻模式、其分離度、分辨率與孔容積、孔徑大小及分布有密切關系。孔容積越大,往往分離度越好,因此SEC往往都是選擇孔容積大的,常用反相硅膠色譜填料孔容積一般是1 mg/g, 而用于SEC硅膠孔容積往往大于1.4mg/g 。但孔容積大,硅膠機械強度差、耐壓性也差,這也是為什么SEC色譜柱壽命都比較短的原因。另外硅膠填料粒徑越均勻,分子在填料微球孔道的擴散遷移路徑越一致,相應的保留時間也一致,減少分子擴散系數,從而獲得更高的柱效和分辨率。因此高度粒徑均一的且具有大孔容積的單分散硅膠是SEC理想的基球。