|
公司基本資料信息
|
絲桿步進電機基本原理
本電機的基原理:采用一根螺桿和螺母相嚙合,采取某種方法防止螺桿螺母相對轉動,從而使螺桿軸向移動。一般而言,有兩種實現這種轉化的方式,頭種是在電機內置一個帶內螺紋的轉子,以轉子的內螺紋和螺桿相嚙合而實現線性運動,第二種是以螺桿作為電機出軸,在電機外部通過一個外部驅動螺母和螺桿相嚙合從而實現直線運動。這樣做的結果是大大簡化了設計,使得在許多應用領域中能夠在不安裝外部機械聯動裝置的情況下直接使用絲桿步進電機進行精密的線性運動。
步進電機的自適應控制
自適應控制是在 20 世紀 50 年代發展起來的自動控制領域的一個分支 。它是隨著控制對象的復雜化 ,當動態特性不可知或發生不可預測的變化時 ,為得到高的性能的控制器而產生的 。其主要優點是容易實現和自適應速度快 ,能有效地克服電機模型參數的緩慢變化所引起的影響 ,是輸出信號跟蹤參考信號 。文獻研究者根據步進電機的線性或近似線性模型推導出了全局穩定的自適應控制算法 , 這些控制算法都嚴重依賴于電機模型參數 。文獻將閉環反饋控制與自適應控制結合來檢測轉子的位置和速度 , 通過反饋和自適應處理 ,按照優化的升降運行曲線 , 自動地發出驅動的脈沖串 ,提高了電機的拖動力矩特性 ,同時使電機獲得準確的位置控制和較高較平穩的轉速 。
目前 ,很多學者將自適應控制與其他控制方法相結合 ,以解決單純自適應控制的不足。文獻設計的魯棒自適應低速伺服控制器 ,確保了轉動脈矩的很大化補償及伺服系統低速高精度的跟蹤控制性能 。文獻實現的自適應模糊 PID 控制器可以根據輸入誤差和誤差變化率的變化 ,通過模糊推理在線調整 PID參數 ,實現對步進電機的自適應控制 ,,從而有效地提高系統的響應時間 、計算精度和抗干擾性 。
步進驅動和伺服驅動的主要區別
步進電機主要是依相數來做分類,而其中又以二相、五相步進電機為目前市場上所廣泛采用。二相步進電機每轉較細可分割為400等分,五相則可分割為1000等分,所以表現出來的特性以五相步進電機較佳、加減速時間較短、動態慣性較低。
隨著全數字式交流伺服系統的出現,交流伺服電機也越來越多地應用于數字控制系統中。為了適應數字控制的發展趨勢,運動控制系統中大多采用步進電機或全數字式交流伺服電機作為執行電動機。雖然兩者在控制方式上相似(脈沖串和方向信號),但在使用性能和應用場合上存在著較大的差異。