|
公司基本資料信息
|
我國是石油資源匱乏的國家,經濟的快速發展,使我國在短短的三十年變成了石油的純進口國,大約一半的石油來自進口,給國家的能源安全帶來極大的隱患。
由于采用了上述的技術方案,本實用新型與現有技術相比,具有以下的優點和積極效果:本實用新型通過冷凍器對廢水進行冷d結晶,可以有效降低廢水中COD,鹽和氨氮濃度,通過分離洗滌裝置將濃縮液與冰晶有效分離,并通過對冰晶表面進行洗滌,使得經過處理后得到的純水能夠達到飲用水標準。根據權利要求4所述的基于多級流化床結晶的脫硫廢水處理系統,其特性在于,微晶精濾裝置為多介質過濾器,陶瓷膜多孔過濾器或管式微濾裝置,微晶精濾裝置去除螯合劑循環流化床形成的微晶物質,并將SDI控制在3以下。
冷卻結晶技術在廢水處理領域的應用
工業廢水中往往含有大量的鹽分,廢水成分復雜。各組分的飽和濃度也不同。因此,傳統的蒸發結晶方法不能分離晶體產品中的組分鹽。換言之,所得的結晶產物不能作為終產品獲得。它仍然花費金錢和人力來處理。
該化工廠產生的廢水的主要成分是Na2SO4。根據廢水處理的要求,有必要從溶液中提取硫酸鈉。為此,采用蒸發濃縮技術和冷卻結晶技術處理廢水,同時獲得附加值副產品硫酸鈉晶體。鹽水硫酸鈉廢水經過預熱冷凝水蒸發的過程,進入第y、第二效加熱器蒸發和冷凝。達到飽和濃度后,硫酸鈉是通過冷d結晶分離和冷凍裝置。離心分離后含有少量硫酸鈉的母液,可以被其它廢水處理方法處理。分離后的晶漿主要由水硫酸鈉晶體,并含有少量的有機物和其他雜質。這需要提煉成無s硫酸鈉。首先,硫酸鈉十水進入溶解槽得到硫酸鈉漿。根據權利要求1所述的連續生產方法,其特征在于,所述高硝鹽水可以為化工廢水,尤其是煤化工產生的廢水,優選為經過預處理、膜處理以及MVR初步濃縮結晶的煤化工廢水,所述高硝鹽水中含Na2SO45%-15%(Wt:重量百分比)。然后,它進入MVR蒸發器進行蒸發結晶。硫酸鈉晶體是由于高溫產生。通過離心作用固液分離后,液體在流化床結晶硫酸鈉干燥也產生。后,得到符合標準的硫酸鈉。
脫硫廢水濃縮蒸發結晶鹽分離工藝
1.一種脫硫廢水濃縮蒸發、結晶、鹽分離工藝,其特征在于,包括以下步驟:
(1)原水通過進料泵進入冷凝水預熱器中,預熱升溫;
(2)預熱升溫后進入一效降膜蒸發器的分離器中,一效循環泵將一效分離器內的物料送入一效加熱器頂部形成膜狀向下流動,循環流動過程中與管外熱交換,蒸發水分提升濃度;
(3)所述一效降膜蒸發器中出來的物料通過所述一效循環泵進入到四效強制循環蒸發器中,在所述四效強制循環蒸發器的分離器中,由四效強制循環泵輸送物料經過換熱器換熱交換,蒸發水分提升濃度;
(4)所述四效強制循環蒸發器中出來的物料經過四效轉料泵打入三效分離器內,由三效強制循環泵輸送物料經換熱器交換熱量,蒸發水分提升濃度;
(5)物料由三效中轉泵打入二效分離器內,由二效強制循環泵輸送物料經過換熱器交換熱量,蒸發水分提升濃度;
(6)經過濃縮后的濃縮液進入旋液器,再進入離心機中,離心分離后獲得硫酸鈉晶體,硫酸鈉晶體進行干燥包裝,分離后的母液進入(7)中;
(7)將(6)中的母液輸送至冷凍d晶裝置冷凍,冷凍后的母液經過預熱后進入三效蒸發器,將氯化鈉進行蒸發濃縮結晶;
(8)經過濃縮結晶后的濃縮液進入離心機中,氯化鈉離心分離,將氯化鈉結晶鹽進行洗鹽提純和干燥,得到氯化鈉工業鹽,母液進入(9)中;
(9)將(8)中的母液進入單效強制循環蒸發器中進行蒸發濃縮,濃縮液再進行冷卻結晶分離,獲得雜鹽。
2.根據權利要求1所述的脫硫廢水濃縮蒸發、結晶、鹽分離工藝,其特征在于,(7)中將冷凍后的母液預熱進行三效蒸發的步驟包括:
步驟一、冷凍后的母液進入冷凝水預熱器中預熱,預熱后進入一效強制循環蒸發器中,蒸發水分提升濃度;
步驟二、步驟一中獲得的物料經過一效中轉泵輸送至三效強制循環蒸發結晶裝置的分離器中,由三效強制循環泵輸送物料經換熱器交換熱量,蒸發水分提升濃度;
步驟三、步驟二中獲得的物料經過三效轉料泵打入二效強制循環蒸發結晶裝置的分離器中,由二效強制循環泵輸送物料經過換熱器交換熱量,蒸發水分提升濃度。
3.根據權利要求1所述的脫硫廢水濃縮蒸發、結晶、鹽分離工藝,其特征在于,(7)中將(6)中的母液輸送至冷d結晶裝置冷凍的步驟還包括:
第y步、(6)中的母液通過進料泵進入攪拌罐中,由強制循環泵輸送物料經過冷凝器換熱交換,進行物理急凍;
第二步、冷d結晶設兩級處理,末效溫度為-5℃,硫酸鈉以十水硫酸鈉和七水硫酸鈉的混合鹽結晶存在,結晶鹽再與原液進行稀釋升溫,結晶鹽呈熔融狀態,再經過水泵轉至(5)中的二效分離器中進行再濃縮,提高純度。
4.根據權利要求1所述的脫硫廢水濃縮蒸發、結晶、鹽分離工藝,其特征在于,在(2)、(3)、(4)、(5)中的蒸發工藝中,pH為5-6。